RSN23007F

Green Power Module (GPM) 650V 30A, 3-Phase Inverter IPM

Features

- 650V / 30A 3-Phase IGBT Inverter
- Low-Losses & Short-Circuit-Rated IGBTs
- Soft Reverse Recovery Diodes
- Built-In Bootstrap Diodes
- Very Low Thermal Resistance with DBC Substrate
- Separate Open-Emitters from Low-Side IGBTs
- Under-Voltage Lock-Out for high side and low side
- Short-Circuit Protection
- LVIC Temperature Output
- 3.3 V and 5V Input Logic Compatible : Active High
- Fault Signaling : LVIC, UVLO and Short-circuit Protection
- Isolation Rating of 2500 Vrms/1 min
- UL 1557 Certified (File E540859)

Typical Applications

- Air-conditioner, Washing machine etc.
- Motor Control Industrial Motor (AC 200 V Class)

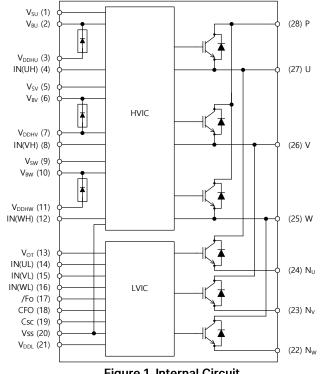


Figure 1. Internal Circuit

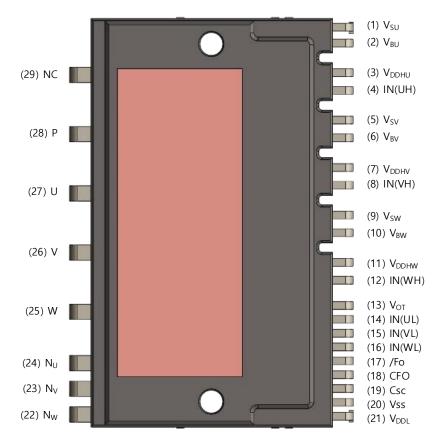


Figure 2. Pin Configuration – Top View

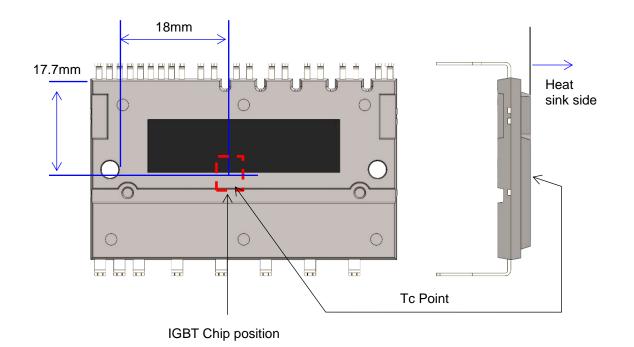


Figure 3. Tc Measurement Point

PIN DESCRIPTION

Pin Number	Pin Name	Pin Description
1	V _{SU}	High-Side Bias Voltage Ground for U Phase IGBT Driving
2	V _{BU}	High-Side Bias Voltage for U Phase IGBT Driving
3	V _{DDHU}	High-Side Bias Voltage for U Phase Bootstrap Diode
4	IN(UH)	Signal Input for High-Side U Phase
5	V _{SV}	High-Side Bias Voltage Ground for V Phase IGBT Driving
6	V _{BV}	High-Side Bias Voltage for V Phase IGBT Driving
7	V _{DDHV}	High-Side Bias Voltage for IC and V Phase Bootstrap Diode
8	IN(VH)	Signal Input for High-Side V Phase
9	V _{SW}	High-Side Bias Voltage Ground for W Phase IGBT Driving
10	V _{BW}	High-Side Bias Voltage for W Phase IGBT Driving
11	V _{DDHW}	High-Side Bias Voltage for V Phase Bootstrap Diode
12	IN(WH)	Signal Input for High-Side W Phase
13	V _{OT}	Voltage Output for LVIC Temperature
14	IN(UL)	Signal Input for Low-Side U Phase
15	IN(VL)	Signal Input for Low-Side V Phase
16	IN(WL)	Signal Input for Low-Side W Phase
17	/Fo	Fault Output
18	CFO	Capacitor for Fault Output Clear Time
19	Csc	Input for Short-circuit Current Protection
20	V _{SS}	Low-Side Common Supply Ground, connected to LVIC
21	V _{DDL}	Low-Side Bias Voltage for IC and IGBTs Driving
22	Nw	Negative DC-Link Input for W Phase
23	Nv	Negative DC-Link Input for V Phase
24	Nu	Negative DC-Link Input for U Phase
25	W	Output for W Phase
26	V	Output for V Phase
27	U	Output for U Phase
28	Р	Positive DC-Link Input
29	NC	No Connection

ABSOLUTE MAXIMUM RATINGS (Tj = 25°C unless otherwise noted)

Symbol	Rating	Conditions	Rating	Unit
ERTER PAR	т			
V _{PN}	Supply Voltage	Applied between $P-N_U$, N_V , N_W	450	V
$V_{\text{PN}(\text{surge})}$	Supply Voltage (Surge)	Applied between $P-N_U$, N_V , N_W	550	V
V_{CES}	Collector-Emitter Voltage		650	V
Ι _C	Each IGBT Collector Current	T _C =25°C, T _i ≤150°C	30	А
I _{CP}	Each IGBT Collector Current (Peak)	T_c =25°C, T_j ≤150°C, Under 1ms Pulse Width (Note 1)	60	А
Pc	Collector Dissipation	T _c =25°C per One Chip (Note 1)	139	W
Tj	Operating Junction Temperature		-40~150	°C

CONTROL PART

V _{DD}	Control Supply Voltage	Applied between $V_{\text{DDH}},V_{\text{DDL}}\text{-}V_{\text{SS}}$	20	V
V _{BS}	High-Side Control Bias Voltage	Applied between $V_{\text{BU}}\text{-}V_{\text{SU}},~V_{\text{BV}}\text{-}V_{\text{SV}},~V_{\text{BW}}\text{-}V_{\text{SW}}$	20	V
V _{IN}	Input Signal Voltage	Applied between IN(UH), IN(VH), IN(WH), IN(UL), IN(VL), IN(WL) - V _{SS}	-0.5~V _{DD} +0.5	V
V _{FO}	Fault Output Supply Voltage	Applied between F_o-V_{ss}	-0.5~V _{DD} +0.5	V
I _{FO}	Fault Output Current	Sink Current at Fo pin	5	mA
V _{SC}	Current Sensing Input Voltage	Applied between C_{SC} -V _{SS}	-0.5~V _{DD} +0.5	V
Tj	Operating Junction Temperature		-40~150	°C

BOOSTSTRAP DIODE PART

V_{RRM}	Maximum Repetitive Reverse Voltage	650	V
Tj	Operating Junction Temperature	-40~150	°C

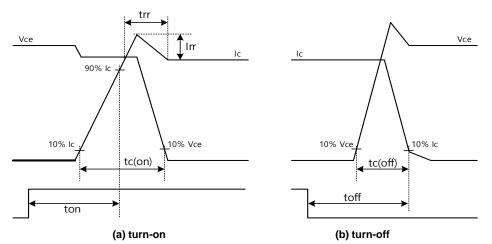
TOTAL SYSTEM

V _{PN(PROT)}	Self-Protection Supply Voltage Limit (Short-Circuit Protection Capability)	$V_{DD}=V_{BS}=13.5$ ~16.5V, T _j =150°C, Non-Repetitive, < 2 µs	400	V
Tc	Module Case Operation Temperature	See Figure 3	-40~125	°C
T _{stg}	Storage Temperature		-40~125	°C
V _{iso}	Isolation Voltage	60 Hz, Sinusoidal, AC 1 Minute, Connection Pins to Heat Sink Plate	2500	Vrms

Note 1: These values had been made an acquisition by the calculation considered to design factor.

THERMAL RESISTANCE

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _{th(j-c)Q}		Inverter IGBT Part (per 1/6 module)	-	-	0.9	°C/W
R _{th(j-c)F}		Inverter FWDi Part (per 1/6 module)	-	-	1.7	°C/W


Note 2: For the measurement point of case temperature (Tc), please refer to Figure 3.

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified.)

Sy	/mbol	Parameter	Condi	itions	Min	Тур	Max	Unit
INVER	TER PART	r						
V	CE(sat)	Collector-Emitter Saturation Voltage	V _{DD} =V _{BS} =15V V _{IN} =5V	I _C =30A, T _j =25°C	-	1.5	1.8	V
	V _F	FWDi Forward Voltage	V _{IN} =0V	I _C =-30A, T _j =25°C	-	1.5	1.8	V
	t _{on}				I	1.5	-	μs
	t _{c(on)}		V _{PN} =300V, V _{DD} =15 V, I _C =3	304 T-25°C	I	0.2	-	μs
HS	t _{off}		V _{IN} =0V↔5V, Inductive Load, See Figure 4		I	1.5	-	μs
	$t_{c(off)}$		(Note 3)		I	0.1	-	μs
	t _{rr}				I	0.1	-	μs
	t _{on}	Switching Times			Ι	1.4	-	μs
	t _{c(on)}		V _{PN} =300V, V _{DD} =15 V, I _C =3	30A T-25°C	I	0.2	-	μs
LS	t _{off}		V _{IN} =0V↔5V, Inductive L		-	1.4	-	μs
	t _{c(off)}		(Note 3)		0.1	-	μs	
	t _{rr}				I	0.1	-	μs
	I _{CES} Collector-Emitter Leakage Current		$V_{CE} = V_{CES}$		-	-	1	mA

Note 3: ton and toff include the propagation delay of the internal drive IC. tc(on) and tc(off) are the switching times of IGBT under the given gatedriving condition internally. For the detailed information, please see Figure 4.

Figure	4	Switching	Time	Definition
riguic	 -	owncoming	11110	Deminion

Symbol	Parameter	Con	ditions	Min	Тур	Max	Unit			
CONTROL PAI	DNTROL PART									
IQDDH	Quiescent V _{DD} Supply	V _{DDH} =15V, V _{IN(UH,VH,WH)} =0V	V_{DDH} - V_{SS}	-	-	0.1	mA			
	Current	V _{DDL} =15V, V _{IN(UL,VL,WL)} =0V	V _{DDL} -V _{SS}	-	I	2.0	mA			
I _{QBS}	Quiescent VBS Supply Current	V _{DD} =V _{BS} =15V, V _{IN(UH,VH,WH)} =0V	$\begin{matrix} V_{BU} - V_{SU}, \ V_{BV} - V_{SV}, \\ V_{BW} - V_{SW} \end{matrix}$	-	-	0.1	mA			
V_{FOH}	Fault Output Voltage	V_{DD} =15V, V_{sc} =0V, V_{FO} Circuit: 10k Ω to 5V	- Pull-up	4.90	Ι	_	V			
V _{FOL}		V_{DD} =15V, V_{sc} =1V, I_{FO} =1	V _{DD} =15V, V _{sc} =1V, I _{FO} =1mA		-	0.95	V			
V _{SC(ref)}	Short Circuit Trip Level (Note 4)	V _{DDH} =V _{DDL} =15V	C _{SC} –V _{SS}	0.455	0.48	0.505	V			

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified.) (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
NTROL PA	RT					
U_{VDDD}		Detection Level	10.3	-	12.5	V
U_{VDDR}	Supply Circuit Under-Voltage	Reset Level	10.8	-	13.0	V
U_{VBSD}	F	Detection Level	10.0	-	12.0	V
U_{VBSR}		Reset Level	10.5	-	12.5	V
I _{IN}	Input Current (Note 6)	$V_{IN} = 5V$	0.7	1.0	1.5	mA
V _{IN(ON)}	ON Threshold Voltage		-	-	2.6	V
V _{IN(OFF)}	OFF Threshold Voltage	Applied between $V_{IN(UH,VH,WH)} - V_{SS}$, $V_{IN(UL,VL,WL)} - V_{SS}$	0.8	-	-	V
V _{OT}	Voltage Output for LVIC Temperature Sensing Unit	V _{DDL} =15V, T _{LVIC} =25°C See Figure 5 and 6 (Note 5)	0.88	1.13	1.39	V
t _{FOD}	Fault-Out Pulse Width	$C_{FO}=22nF(C_{FO}=9.2x10^{-6}xt_{FOD}(F))$	1.6	2.4	-	ms

Note 4: Short-circuit current protection functions only at the low-sides because the sense current is divided from main current at low-side IGBTs. Inserting the shunt resistor for monitoring the phase current at NU, NV, NW terminal, the trip level of the short-circuit current is changed.

Note 5: T_{LVIC} is LVIC temperature and V_{OT} is only for sensing the temperature of LVIC and cannot shut down IGBTs automatically. The relationship between V_{OT} voltage output and LVIC temperature is described in Figure 5. It is recommended to add a ceramic capacitor of 10 nF or more between V_{OT} and V_{SS} to make the V_{OT} more stable. Refer to the application note for this product about usage of V_{OT}.

Note 6: RC coupling at each input might change depending on the PWM control scheme used in the application and the wiring impedance of the application's printed circuit board. The input signal section integrates 5 kΩ (typ.) pull-down resistor. Therefore, when using an external filtering resistor, please pay attention to the signal voltage drop at the input terminal.

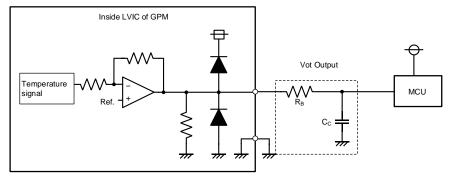
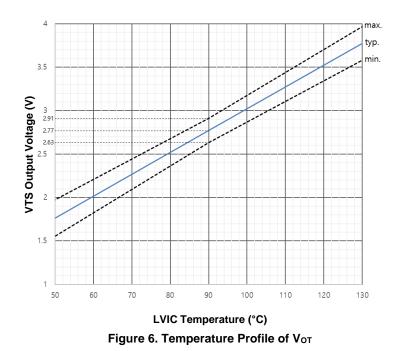



Figure 5. Internal Block Diagram and Interface Circuit of Vot

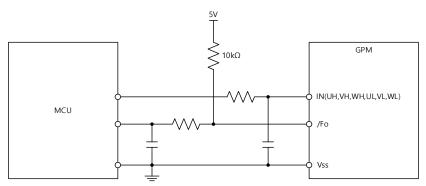


Figure 7. Recommended MCU I/O Interface Circuit

ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified.) (continued) BOOTSTRAP DIODE/RESISTOR PART

Symbol	Parameter	Conditio	ns	Min	Тур	Max	Unit
VF	Forward Voltage	I _F =0.01A, T _j =25°C	See Figure 8	-	1.6	-	V

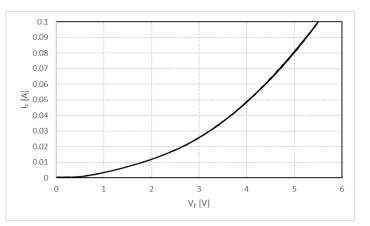


Figure 8. Characteristics of Bootstrap Diode

RECOMMENDED OPERATING RANGES

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{PN}	Supply Voltage	Applied between $P-N_U$, N_V , N_W	I	300	400	V
V _{DD}	Control Supply Voltage	Applied between $V_{DDH}-V_{SS}$, $V_{DDL}-V_{SS}$	13.5	15.0	16.5	V
V_{BS}	High-Side Control Bias Voltage	Applied between V_{BU} - V_{SU} , V_{BV} - V_{SV} , V_{BW} - V_{SW}	13.0	15.0	18.5	V
dV _{DD} /dt, dV _{BS} /dt	Control Supply Variation		-1	-	+1	V/µs
t _{dead}	Blanking Time for Preventing Arm – Short	For Each Input Signal	1.0	-	-	μs
f _{PWM}	PWM Input Signal	−40°C≤T _C ≤125°C, −40°C≤T _j ≤150°C	-	-	20	kHz
PWIN(ON)	Minimum Input Pulse	(Note 7)	0.7	-	-	110
PWIN(OFF)	Width			-	-	μs
Tj	Junction Temperature		-40	-	+150	°C

Note 7: This product might not make output response if input pulse width is less than the recommended value.

PACKAGE MARKING AND ORDERING INFORMATION

Device	Device Marking	Package	Shipping
RSN23007F	RSN23007F	GPM29-PA	400 ea/box

MECHANICAL CHARACTERISTICS AND RATINGS

Parameter	Conditions	Min	Тур	Max	Unit
Device Flatness	See Figure 9	-50	-	150	μm
Mounting Torque	Mounting Screw: M3	0.59	0.78	0.98	N∙m
Terminal Pulling Strength	Control terminal : Load 5N Power terminal : Load 10N	10	-	-	s
Terminal Bending Strength	Control terminal : Load 5N Power terminal : Load 10N 90 degree Bend	2	_	-	times
Weight		I	21	-	g

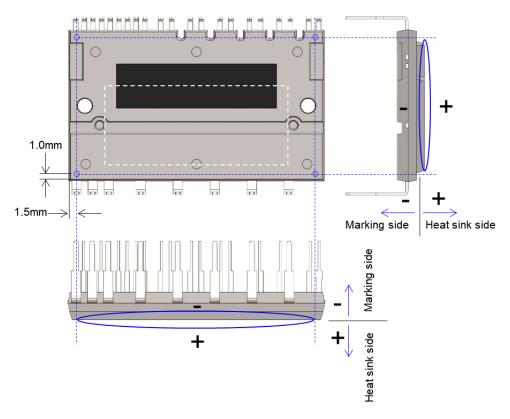
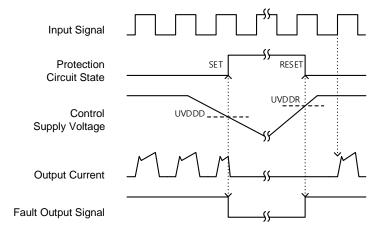
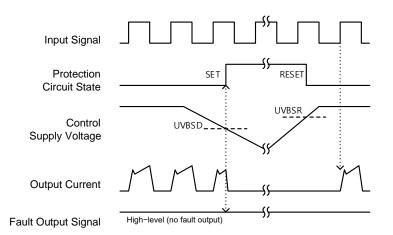



Figure 9. Flatness Measurement Position

TIME CHARTS OF GPMs PROTECTIVE FUNCTION

a1: Normal operation: IGBT ON and carrying current.

a2: Under-voltage detection (UVDDD).


a3: IGBT OFF in spite of control input condition.

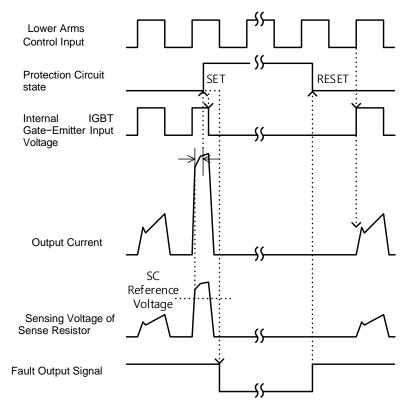
a4: Fault output operation starts with a fixed pulse width.

a5: Under-voltage reset (UVDDR).

a6: Normal operation: IGBT ON and carrying current by triggering next signal from LOW to HIGH.

Figure 10. Under-voltage Protection (Low-side)

b1: Normal operation: IGBT ON and carrying current.


b2: Under-voltage detection (UVBSD).

b3: IGBT OFF in spite of control input condition, but there is no fault output signal.

b4: Under-voltage reset (UVBSR).

b5: Normal operation: IGBT ON and carrying current by triggering next signal from LOW to HIGH.

Figure 11. Under-voltage Protection (High-side)

c1: Normal operation: IGBT ON and carrying current.

c2: Short-circuit current detection (SC trigger).

c3: All low-side IGBTs gates are hard interrupted.

c4: All low-side IGBTs turn OFF.

c5: Fault output clear time set by the capacitance (C_{FO}).

c6: Input HIGH - IGBT ON state, but during the active period of fault output, the IGBT doesn't turn ON.

c7: Fault output operation finishes, but IGBT doesn't turn on until triggering the next signal from LOW to HIGH.

c8: Normal operation: IGBT ON and carrying current.

Figure 12. Short-circuit Current Protection (Low-side Operation Only)

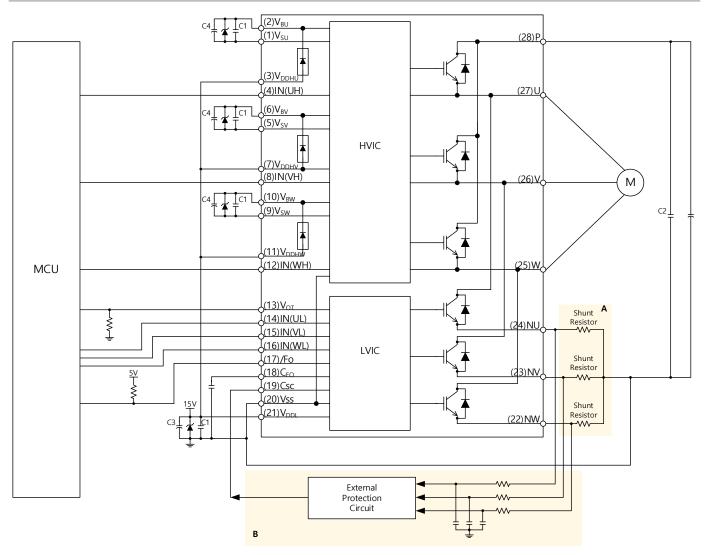
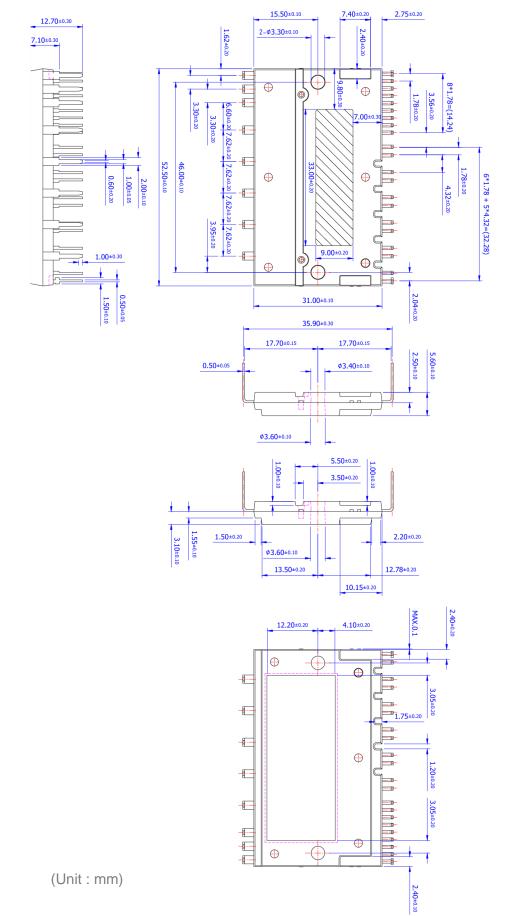



Figure 13. Typical Application Circuit

- To avoid malfunction, the wiring of each input should be as short as possible (less than 2-3 cm). 1.
- Fault output is an open-drain type. This signal line should be pulled up to the positive side of the MCU or control power supply with a resistor that makes I_{FO} up to 1 mA. Please refer to Figure 7. Input signal is active-HIGH type. There is a 5 k Ω resistor inside the IC to pull-down each input signal line to GND. RC coupling circuits 2.
- 3. should be adopted for the prevention of input signal oscillation. RC time constant should be selected in the range 50~150 ns (recommended $R = 100\Omega$, C = 1 nF). Please refer to Figure 7. Each wiring pattern inductance of point A should be minimized (recommend less than 10 nH). Use the shunt resistor Rsh of surface mounted
- 4. (SMD) type to reduce wiring inductance.
- 5 To insert the shunt resistor to measure each phase current at NU, NV, NW terminal, it makes to change the trip level Isc about the shortcircuit current.
- To prevent errors in the protection function, the wiring of point B should be as short as possible. 6
- 7. For stable protection function, use the sense resistor Rsh with resistance variation within 1% and low inductance value.
- 8. In the short-circuit protection circuit, select the RC time constant of protection circuit in the range 2.0~2.5 µs.
- Each capacitor C1 should be mounted as close to the pins of the GPM product as possible. 9.
- 10. To prevent surge destruction, the wiring between the smoothing capacitor C2 and the P & GND pins should be as short as possible. The use of a high-frequency non-inductive capacitor of around 0.1~0.22 µF between the P & GND pins is recommended.
- 11. Relays are used in most systems of electrical equipment in industrial application. In these cases, there should be sufficient distance between the MCU and the relays.
- 12. The Zener diode or transient voltage suppressor should be adopted for the protection of ICs from the surge destruction between each pair of control supply terminals (recommended Zener diode is 22V/1W, which has the lower Zener impedance characteristic than about 15 Ω). 13. C3 of around seven times larger than bootstrap capacitor C4 is recommended.
- 14. Please choose the electrolytic capacitor with good temperature characteristics in C4. Choose 0.1~0.2µF R-category ceramic capacitors with good temperature and frequency characteristics in C1.

PACKAGE DIMENSIONS

Disclaimer

- The specifications and performance of the product stated in this document are based on the information provided in the datasheets from Raonsemi. Raonsemi may change the specifications without prior notice. Therefore it is recommended that customer contact Raonsemi for the latest product information.
- The information in this document is provided solely for informational purposes and does not guarantee suitability for specific applications or uses. User must thoroughly review and confirm the product's specifications and performance for their specific applications.
- Raonsemi does not guarantee the accuracy of completeness of the information contained in this document and disclaims all
 warranties regarding the product's suitability, reliability, or fitness for any particular purpose. All responsibility for the product's
 performance lies with the user.
- Before using the product, relevant safety regulations and electrical standards must be strictly followed. Users are responsible for reviewing and ensuring the product's safety and compliance with regulations.
- Raonsemi assumes no liability for any direct, indirect, incidental, or consequential damages resulting from the use of this product. The user is responsible for any damages caused by the product's use.
- This document does not guarantee that its content does not infringe on third-party intellectual property rights. Users should ensure that the product's use does not infringe on any third-party rights.